Basic formulas
cos2(t) + sin2(t) = 1
1 + tan2(t) = sec2(t)
1 + cot2(t) = cosec2(t)
The area of the triangle is a.h/2 .
But in triangle BAH, we have sin(B) = h/c .
Hence the area of the triangle is a.c.sin(B) /2.
Similarly, we have that the area of the triangle
= b.c.sin(A) /2 = a.b.sin(C) /2
| The area of a triangle ABC =(1/2) a.c.sin(B) = (1/2) b.c.sin(A) = (1/2) a.b.sin(C) |
You can also use Heron's formula to calculate the area of a triangle.
Let s = half the circumference of the triangle = (a +b + c)/2.
The area of a triangle ABC =
______________________________
V s (s - a) (s - b) (s - c)
|
Sine rule
a b c
------ = ------ = ------
sin(A) sin(B) sin(C)
Let R be the radius of the circle with center O through the points A,B and C.
In any triangle ABC we have
a b c
------ = ------ = ------ = 2R
sin(A) sin(B) sin(C)
Cosine rule
In any triangle ABC we have
a2 = b2 + c2 - 2 b c cos(A)
b2 = c2 + a2 - 2 c a cos(B)
c2 = a2 + b2 - 2 a b cos(C)
|
cos(u-v) = cos(u).cos(v)+sin(u).sin(v)
sin(u - v) = sin(u).cos(v)-cos(u).sin(v)
tan(u) + tan(v)
tan(u+v) = -----------------
1 - tan(u).tan(v)
Let t = tan(u) , then
1 - t2
cos(2u) = ---------
1 + t2
or
1 - tan2(u)
cos(2u) = -------------
1 + tan2 (u)
2t
sin(2u) = --------
1 + t2
or
2 tan(u)
sin(2u) = -----------
1 + tan2 (u)
Simpson formulas
x + y x - y
cos(x) + cos(y) = 2 cos ------ cos -------
2 2
x + y x - y
cos(x) - cos(y) = -2 sin ------ sin -------
2 2
x + y x - y
sin(x) + sin(y) = 2 sin ------ cos -------
2 2
x + y x - y
sin(x) - sin(y) = 2 cos ------ sin -------
2 2
|
No comments:
Post a Comment